
I

7 hl 1- - - r - The Magazine o f Scientific Visualization

Universal Data Access for Time
Series Analvsis

J

by Ben Dubrovsky

B efore analysts can gain insight
from recorded data, they must

first gain access. They must struggle
,- with data recorded in inconsistent

formats, from different computers,
in different files, and usually recorded
asynchronously, at different sample
rates, and fraught with dropouts and
problems with time-code generators.
The battle has generally been waged
in one of two ways--either build-
ing custom analysis tools, or prepro-
cessing data into a form prescribed
by an off-the-shelf analysis package.
Neither of these solutions, however,
is optimal for today's world. What
is needed is a tool that will access
recorded data in whatever form it
happens to exist. In order to do this,
we must examine the similarities be-
tween all data formats, and exploit
those similarities to develop a generic
data file.

There are several basic types of
recording formats to consider: time-
multiplexed, messages, tagtdata, te-
lemetry frame. With time-multi-
plexed data the same set of data
samples are recorded one after the
other. Time may be recorded as a
variable, or may be determined by a
constant recording rate. Message data
consists ofseveral messages recorded
sequentially. Each message may have
a different internal structure, but all
message data have a common header.
The header generally includes a time
stamp, an ID indicating what type of
message follows, and an indication of
how long the message is. With tag/
data each data value is preceded by a
tag number that identifies it. Time

values have their own specific tags.
Where any particular datum occurs,
including time, it appears completely
asynchronous. A telemetry frame
consists of a major frame, which
contains some number of minor
frames. Data recorded at different
sample rates may appear in different
sub-sets of minor frames. Each mi-
nor frame has the same length. Major
frames are recorded one after another
at a constant rate.

Data analysis systems have two
components-data access and data
presentation. In order to breakdown
the access process into discrete tasks,
we must begin to define and exploit
some similarities between recorded
time-series data files:

The recorded data is time depen-
dent. Somehow, time is encoded in
the file, and there is some determin-
istic way of decoding it.

Data are streamed into the file.
As data are gathered, they are re-
corded into the system. The data
recorded later in the test are stored
later in the file.

We define a frame as the set of
data recorded at one particular point
in time.

We define a variable to be a par-
ticular datum recorded inside a
frame.

We can thus break the process of
understanding a particular data for-
mat into the following three steps:

1. Understand the overall record-
ing format of the data stream. Where
are frame boundaries? How is time
decoded? How do we navigate from
one frame to the next?

2. Given a frame, understand how
it is structured, and how to find and
unpack specific variables from within
that particular frame.

3. Given a specific variable from
within a frame, calibrate or trans-
form the variable into engineering
unit (EU) form.

The first step in connecting to
recorded data is the accessing of an
arbitrary file structure, or recording
format. The data stream is divided
into several generic components-
file, file header, records, record header,
frame, frame header, frame informa-
tion (time, length, ID, data). Note
that each of these components may
exist in a particular data set, but it is
not necessary for all to exist. Thus,
the hierarchy of the model is that a
file may contain a number ofrecords,
including some header records; a
record may or may not have a header
and contains some number offrames;
each frame may or may not have a
frame header, and can be identified
by a frame time, frame ID, and frame
length. Once we have a model for
how a generic file is organized, we
can develop a software architecture
to decode that structure.

When I was working at Bolt
Beranek and Newman Inc. in Cam-
bridge, Massachusetts, we did in fact
develop such a program, which we
called The Flexible File Server (FFS).
It works in concert with a table-
driven dictionary, and a general pur-
pose function evaluator to form the
basis of BBNIProbe, an advanced
data visualization package. The Flex-
ible File Server is a layer of software

P I X E L

M a r c h I A p r i 1 * 1 9 9 1

that responds to requests for data
frames by returning a pointer to a
frame of data somewhere in the data
file. The requests to the FFS may be
thought of as having the form, "Find
me the first frame, at or after time t,
whose frame ID is in this list...". The
list is the set ofall frame ID'S in which
each requested variable may appear.
At this point, the calling subroutine
does not care how the frame is found.
It is the responsibility of the FFS to
find the frame that fits the given
criteria. Since the FFS responds to
requests for data based on a specific
time, the issues of data being asyn-
chronous and recorded at different
sample rates become moot. The FFS
simply finds the first frame, at or after
a given time. Thus, the FFS per-
forms its function of returning a
pointer to a frame of particular ID at
a particular time by making an or-
dered series of subroutine calls to
these functions. The basic algorithm
used to locate frames in a data stream
is shown in Figure 1.

This algorithm is modified to rec-
ognize when a frame at a given time
and of a specific ID is found, and to
stop searching at that point. As records
are read, information about them is

if (looking for a previously seen time) {
search known records for appropriate tlme;
read in the old record;
return pointer to known frame;

1
else C

position to the end of file;
while (more records exist in file) {

read in a record from the file;
determine the record's length;
find the first frame in the record;
while (more frames exist in the record) {

unpack frame id;
unpack frame length;
unpack frame time;
find the next frame in the record;

1.
1

Figure 2.

the first time. The search for a frame
is controlled by the algorithm shown
in Figure 2.

Notice that we have defined an
approach, and a common data file
format, without making specific ref-
erences to any one format-the algo-
rithms above are generic. We define
specific software responsibilities and
interfaces for each of the above sub-
routines. A suite of subroutines is
provided to handle the mcst com-

point form, or decoding frame IDS
that are recorded as integers inside a
frame.

It is impossible to provide a sub-
routine (or subroutines) general
enough to handle all of the possible
cases for all formats. We permit the
system, therefore, to be extended by
dynamically linking in, at run time,
subroutines to replace one or many
of the built-in functions. As an ex-
ample, if a particular data format

C
read in a record from the file;
determine the record's length;
find the first frame in the record;
while (more frames exist in the record)

kept in internal maps. This facilitates mon cases needed for each of these contains a time tag that is not under-
finding records and frames more functions-for example, decoding stood by the suite of built-in subrou-
quickly once they have been read time tags written in VAX floating tines, then a separate module may be

written to perform just the task of

i
unpack frame ID;
unpack frame length;
unpack frame time;

open the file;
initialize the file;
for (every record in the file) -

Dynamic linlung of subroutines
also allows data-specific checks for
time clitches, bad data frames, or
data out ofsynch. Since we are under
program control when inside these
subroutines, we can tailor them to do
highly specific checking that would
not be done inside a general-purpose

decoding that time tag. In this way,
the system becomes extensible enough
to accomodate virtually any record-
ing format.

I find the next frame in the record; / software system. For instance, we can
I 1 I check to see if time tags are out of
I } I order. If thev are, we c& choose to
L.- 1 treat the e r rk t frame as an anomaly,

Fipre 1.

P I X E L

1 CALL FOR PARTICIPATION

O ~ O B E R 22-25,1991
SAN DIEGO, CALIFORNIA

Paver Submission (due Avril 15, 1991)
Original papers should be limited to 5,000
words. Accompanying videos are strongly
encouraged. Four copies of each paper and
NTSC-VHS video should be sent to
Gregory M. Nielson. The co-chairs are:
Gregory M. Nielson Lariy Rasenblum
Comp. Sci. Depr. Code 5170
Arizona Stare Universiry Naval Research Lab
Rural Rd 81 University Ave. Washingto D.C. 20375
Temple, AZ 85287-5406 2021767-2384
6021965-2785

Panel Proposals (due April 15, 199 1)
Panels should emphasize applications.
E. Daniel Bergeron Nahum D. Gershon
Depr. of Camp. Sci. The MITRE Corp.
Univ. of New Hampshire 7325 Colshlre Drive
Durham, N H 03824 McLean, VA 22102-3481
6031862-2677 7031883-7518

Tutorial Provosals (due Avril 15. 1991)
Full and 112 day sessions onTuesday.
Gary Laguna Hlkmet Senay
Lawrence Livermore Dept. of EE & Comp. Sci.
P . 0 Box 808, L-125 Geolge Washington Univ.
4151422-5659 Washington, D.C. 20052

2021994-5910

Case Studies (due Aoril 15, 1991)
Emphasis on real-time, interdisciplinary
applications
Paul Hazan Jeffrey Posdamer
Applied Physics Lab. AT&T Bell Labs, 15E-315
Johns Hopkins Univ. 1 Whittany Road
Laulel, M D 20707 Whittany, NJ 07981-0903
3011953-5364 20 11386-6396

Demonstrations (due Tune 3, 1991)
Part of conference will be devoted solely to
research and commercial demonstrations.
Jerome Con Susan Stearman
Dept. of Comp. Sci. Digital Equipment Carp.
Washington U., Box 1045 4 Results Wy MR04-2lH19
St. Louis, M O 63130 Marlboio, MA01752-3070
3141889-6132 5081467-1575

Workshops (due April 15. 1991)
One or two day workshops on methods or
applications to specific problems.
Art Olson Lloyd Treinlsh
Rca.Insr. of Scripps Clinic IBM Watson Res. Cenrer
La Jolla, C A 92037 P.O. 704, Roam SKY-68
6191554-9702 Yrktwn Hghts, NY 10598

9141784-5038

and discard it, or, we can choose to
adjust the time for purposes of analy-
sis, providing that necessary adjust-
ment is smaller than some set value.
Again, once we are under program
control, the choices become virtually
endless.

Once we are able to access and navi-
gate through a raw data file, the next
step is to access and recover indi-
vidual recordedvariables from frames
of data. This can be accomplished by
using a table-driven dictionary. It
allows access to variables by symbolic
name, relieving end users from hav-
ing to know where particular data
may be recorded. The data dictionary
stores translations between symbolic
names and positions inside particular
dataframes. The dictionarymaintains
the following major categories of in-
formation for referencing the recorded
data: frame ID and mask, position
(which set of bits-identified by start
word, start bit, and field length-
in the frame must be recovered to
generate the particular data channel,
allowing for the datum to be split into
two pieces. Also indicate whether the
datum is bit-, byte- orword-reversed),
storage type, data class, array infor-
mation, conditional information,
scaling information.

Using the information stored in
such a dictionary, we can unpack any
data recorded in a frame in a known
position in a given format.

Once data are found in a given data
stream, and unpacked, they often
must be converted to engineering
unit form to be useful. One way of
accomplishing this is to use a general
purpose function evaluator built in
to the visual data analysis package.
The function evaluator has the capa-
bility to transform a particular vari-
able by an interpreted mathematical
function. The evaluator should be

able to deal with asynchronous and
aperiodic signals, automatically
resampling data when necessary.

For instance, ifa dictionary entry
exists for avariable named X-RAW, we
can calibrate that variable by defining
a hnction, such as:

The fbnction X may now be used in
all standard analyses. In addition, a
wide variety of built-in functions is
provided representing trigonometric,
signal processing, and mathematical
operations. The function evaluator
may also be extended by providing
a capability to manipulate signals
in an external fbnction written in a
higher-level language. This facility
allows for different types of calibra-
tion such as table look-up, and for
custom tailored analysis.

Using a general-purpose architec-
ture, like the one described in this
article, minimizes the amount of
time necessary to get a new data set
online for analysis. The FFS and dic-
tionary are the only components that
need to be re-configured for new
formats. None of the analysis soft-
ware itself needs to be changed. And,
as there is usually no software cod-
ing involved in the process, pro-
grammer time can be minimized.

The difficulty of dealing with
multiple recording formats will never
go away completely. The savings that
come from providing universal ac-
cess to data, however, make the
search for solutions worthwhile.

Ben Dubrovsky has an S. M. in
computer science from Harvard
University. He wrote the Flexible
File Server program when he was at
Bolt Beranek and Newman, Inc. He
is now developing multi-media and
interactive computer video systems
at The Chedd-Angier Production
Co. in Watertown, Massachusetts.

1
P I X E L

	pixel1.pdf
	pixel2.pdf
	pixel3.pdf

