
76 DV January 1997 www.dv.com

I
recently received an e-mail from a reader regarding my col-

umn in the September ‘96 issue. In that article, I talked about

the computer executing “instructions” and related these

instructions to the “megahertz” rating that computers typically

get. The reader properly pointed out that these two concepts are

not the same, but also made the erroneous assumption that they

were unrelated.

I have always made the point that authoring is a form of pro-

gramming. I would also like to point out that the more we know

about the basic environment in which we operate, the more

sophisticated our decisions can be. That’s why it’s important to

look at some computer basics from time to time. While reading

this column, be on the lookout for definitions of those key words:

megahertz, mips, and megaflops.

Heartbeat
The very first thing to know about computer processors is that

they never stop processing. Like the human heart, a computer

clock keeps beating. Also like a human heart, the signature of that

clock’s heartbeat is cyclical: It does the same thing over and over

again. Like a mainspring on a clock or a crankshaft in an engine,

the computer clock is the device that drives all the inner works of

the processor. The clock’s heartbeat is a digital signal that goes

from zero to one in a particular pattern. Actually, zero is some-

times defined as an electric signal of anywhere from 0 to some-

thing like 1.5 volts. One is defined as a signal of anywhere from

3.5 to 5.0 volts. So the clock is a signal on a wire that repeats the

same pattern of voltage over and over again. Zero-one-one-one-

zero-one-one-one-zero-one-one-one. Each repetition of the

clock’s pattern is called a cycle. A computer’s speed is measured as

the number of clock cycles that occur in one second. A computer

with a clock speed of 166 megahertz

(MHz) repeats the clock’s pattern 166 mil-

lion times every second. Because all the

rest of the computer’s functions are driven

by that clock, the clock speed is directly

related to how fast the computer runs.

Micro-code
The next thing to know about computer

processors is that they do only three

things: store binary numbers, test binary

numbers, and manipulate binary num-

bers. Values are stored in memory, tests are made to determine

courses of action, and numbers are manipulated to perform

mathematic and string-related operations. These very basic oper-

ations are all completely hardware based. There is a physical set of

logic gates that know how to test various conditions. Another

physical set of logic gates knows how to add two numbers togeth-

er. Another knows how to generate a request for a particular piece

of memory. These basic operations are controlled by a computer

language that we typically never see—a language known as

micro-code. Micro-code, or micro-instructions, have direct

access to the physical structures on the computer chip. They also

have the unique property of executing in exactly one clock cycle.

Therefore, a 166MHz processor executes 166 micro-instructions

every second.

Macro-code
In addition to the micro-code, each computer chip has its own

macro-code, or macro instruction set. Macro code is the lowest

level programming language that we typically see. When low-

level programmers build instructions for a computer chip, they

build them out of this language or out of Assembler language.

Assembler language is basically the same thing as a macro lan-

guage, except that it’s prettied-up for programming sake. The

basic structure of a macro-instruction typically includes an oper-

ation, two operands, and a place to put the result of the operation.

Operations may include addition, multiplication, data-word

shifting and rotating, interrupt testing and setting, and the like.

Operands are either memory references or references to registers.

Registers contain data, and are directly connected to the proces-

sor. Hence they are accessed more quickly than memory, and are

the staging areas for mathematical operations.

Each macro-instruction available to a programmer is actually

built as a small micro-code program stored way down in the

bowels of the computer. For instance, the macro instruction, “add

A to B and put the result back into A,” might be represented by a

micro code program that reads,

1) get data A

2) get data B

3) do addition

4) put result into A

This macro instruction need-

ed four micro instructions to

execute. If all macro instructions

could be executed using four

micro instructions, our 166 MHz

processor would execute 41.5

million macro instructions every second, also known as MIPS—

millions of instructions per second.

All instructions, however, are not created equal. Some take

more than one hundred micro instructions to execute. Such

instructions are called “expensive.” The price of an instruction is

Mips, Megaherz,
and Megaflops

DV DIGITAL AUTHORING
Just about everyone these days knows
how to operate a computer, but few
people know how a computer
operates. This month’s column delves
into the core of what makes your
computer tick.

by Ben Dubrovsky

Like a mainspring on a clock

or a crankshaft in an engine,

the computer clock is the

device that drives all the

inner works of the processor.

DV January 1997 77www.dv.com

not measured in dollars, it is measured in micro-instructions, or

cycles. In fact, computer processors have manuals published that

disclose how many cycles each instruction costs. The number of

MIPS a computer can execute is actually an elaborate average

based on the frequency of use of particular instructions and their

cost.

One other bit of information that comes out of this discussion

is why Macintosh computers and Intel-based computers use dif-

ferent code. They each have different computer chips which, in

turn, sport different macro languages. Code written for one

macro-instruction set will just not be understood by the other.

Floating point numbers
The next level of complexity deals with floating point numbers.

Computers tend to stay away from floating point numbers—they

tend to prefer the predictability of integers instead. Floating

point numbers are a complete algorithmic artifice. They’re made

up of three components: a sign, an exponent, and a value. The

number 472.8 is represented as

1) Sign is plus. 2) Exponent is

3. 3) Value is 4728. There is an

assumed decimal point in

front of the value, so the num-

ber 472.8 is the same as +.4728

times 10, raised to the 3rd

power, or .4728 times 1000.

Addition of floating point

numbers involves a lot of work

to normalize exponents, cal-

culate signs, and avoid over-

flows. All this work is

expensive—very expensive. Enter the “floating-point processing

unit.” This specialized piece of hardware moves floating point

arithmetic out of the realm of micro-code and into its own spe-

cialized hardware. Because of the importance of floating point

calculations to almost all applications, a special designation has

been invented: megaflops or millions of floating-point opera-

tions per second. Computers with a hardware FPU will do many

more megaflops than one without.

Computer languages
Now we know that a processor’s basic workings are accessed via

microcode. Macro-code or assembler language, the lowest level

programming languages available, are built up out of micro-

code. Higher-level languages, like C, C++, and Pascal are trans-

lated into assembler language. Finally, languages like Lingo

(sometimes called fourth-generation languages), are executed

through programs written in languages like C. So, when we write

a Lingo program, it’s interpreted by a program that was written

in C, which had already been translated into an assembler or

macro language, that gets executed inside the computer chip by a

micro language.

This knowledge is useful because it should give you an under-

standing and appreciation for how your authoring is treated once

it leaves your hands. Imagine what happens when you ask for one

graphic to blend with another. It means that the computer must

look at every pixel in each of the two graphics. The number of

pixels to look at is a product of the length times the width, in pix-

els, of the graphic. Now think about the number of translations

in computer language that take place, the increased complexity

of each level of computer language, and ultimately the number of

micro-instructions or cycles, processing those pixels must take.

Budget your cycles
Processing pixels is expensive. Budget the number of cycles to be

spent on any particular part of a production, and pinch cycles

where possible. And by the way, cycles can also be taxed by the

“government” operating system of the computer. Every one-half

second or so, the operating system butts in and grabs some cycles

to do its own processing. There could be a number of good

analogies between politics and processors, but let’s leave that for

another day, and for a chat over a beer.

Ben Dubrovsky is a multimedia

producer and programmer from

Brookline, Massachusetts. Reach

him at dubrovsky@dv.com

For more information about this
and other subjects check out our
Web site at http://www.dv.com.
Reach us at letters@dv.com or write
to DV Letters, 411 Borel Ave., Suite
100, San Mateo, CA 94402 or fax
415-358-9865.

DV

DV DIGITAL AUTHORING

If all macro instructions could be

executed using four micro

instructions, our 166 MHz processor

would execute 41.5 million macro

instructions every second, also

known as MIPS—millions of

instructions per second.

